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Abstract—In this paper, a traditional one v.s. one pursuit
and evasion scenario is considered. The evader aims to reach
her target and avoid being captured by the pursuer, while the
pursuer, without the knowledge of the evader’s cost function,
intends to capture the evader before she successfully escapes.
We formulate this problem as a Model Predictive Control
Decoupled Pursuit and Evasion Game (MPC-DPEG) model with
incomplete information. We apply Inverse Optimal Control (IOC)
technique to estimate the evader’s cost function and give a Nash
pursuit strategy for MPC-DPEG as the optimal strategy for the
pursuer. Numerical examples reveal the improvement of pursuit
performance of the Nash pursuit strategy based on the estimated
cost function over naive pursuit strategies.

Index Terms—Pursuit-evasion game, Nash equilibrium, Inverse
optimal control, Model predictive control

I. INTRODUCTION

Pursuit and evasion scenarios have been under research for
decades [1], since such scenarios are widely applied in real
practice, especially in the fields of aerospace, robotics and
military. It is also a prototypical problem where the game
theory is involved.

After the first systematical introduction of differential game
in [2], Ho et.al [3] propose a finite horizon zero-sum linear
quadratic differential game framework to depict the traditional
one evader v.s. one pursuer scenario and provide a saddle
solution by the variational method. Enlightened by this work,
most pursuit and evasion games from then on are tackled in
a zero-sum game way, and the scenarios have become more
complicated to suit real practice. The concept of target (either
static or moving) is studied in [4] – [7], which turns the game
from avoiding being captured v.s. capturing into reaching
before being captured v.s. capturing before reaching as Fig.1
shows.

However, the well-studied finite horizon zero-sum linear
quadratic game model with fixed terminal time has two
drawbacks:
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Fig. 1. Demonstration of a scenario where the evader aims to reach her target
and the pursuer aims to capture the evader.

1) the requirement of a fixed terminal time. In real pursuit
and evasion scenarios, the game never ends at a fixed ter-
minal time. Instead, the game ends as soon as the terminal
condition is met (e.g. the evader is captured or the evader
has escaped), which means the terminal time of the game is
dependent of the states of the evader and the pursuer. With the
terminal time being indeterminate, methods such as dynamic
programming or solving Ricatti equations are not applicable1.
2) the requirement of zero-sum. In real practice, the property
of zero-sum is met only in limited scenarios. It may happen
that the evader and the pursuer value differently on the same
term of the cost function. For instance, with the introduction
of the concept of target, the evader values reaching the target
over avoiding being captured, while the pursuer may only
care capturing. In these cases, a common cost function that
depicts both players’ behavior is not reasonable. Instead, the
cost functions of the two players have to be distinct, which
means the game stands in a nonzero-sum way. Worse still,
the players may only know her own model well, but have no
knowledge of her opponent’s cost function. Without complete
information of the game, general methods of deriving the Nash
strategy is not feasible.

To the best of the authors’ knowledge, only a few research

1This is because that real terminal time of the game is not the nominal
terminal time where the Riccati Iteration starts. The optimal strategy obtained
by solving Riccati equation directly is thus flawed. So we will not demonstrate
it in Section V.
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consider the case of linear quadratic pursuit and evasion
game with indeterminate terminal time. Although Li et.al [5]
introduce the terminal condition of the game, it is only used
to determine the winner of the game, and the terminal time of
the game is still fixed. Li et.al [11] solve the pursuit and eva-
sion game with indeterminate terminal time by solving high-
dimensional two-point boundary value problem. However, the
game is formulated in a zero-sum model and the only term
in the cost function is the terminal time. The evader intends
to maximize the terminal time while the pursuer wants to
minimize it.

To tackle nonzero-sum scenarios, Starr et.al [12] first gener-
alize the “one evader v.s. one pursuer scenario” in a nonzero-
sum way and give a method of deriving Nash equilibrium
of the game. Mylvaganam et.al [13] introduces ways of
obtaining ϵα Nash equilibrium strategies for a class of infinite-
horizon, nonzero-sum differential games. They [14] further
apply nonzero-sum game theory into multi-agent collision
avoidance scenarios and derives the Nash strategy. However,
the nonzero-sum game with incomplete information, where
the opponent’s cost function is unknown to the player, is still
beyond the capacity of their methods. The Nash strategy can
only be obtained after techniques are applied to recover the
cost function(s) of the game.

In this paper, a nonzero-sum discrete linear quadratic pursuit
and evasion game with incomplete information and indeter-
minate terminal time is investigated. To tackle the difficulty
of indeterminate terminal time, we introduces the terminal
indicator functions in the finite horizon cost functions of both
players. The value of terminal indicator functions change when
the winning condition of either player is met. The introduction
of terminal indicator functions resolves the problem of indeter-
minate terminal time of the game, but brings non-smoothness
to the model.

To overcome non-smoothness, we apply Model Predictive
Control (MPC) scheme as the solution and reformulate the
game as a Model Predictive Control based Decoupled Pursuit
and Evasion Game (MPC-DPEG). Several studies [8] - [9]
apply MPC in the pursuit and evasion game as tracking
algorithm since MPC guarantees closed-loop stability for LQR
problems with positive semi-definite weighting matrix Q and
any positive definite R [10]. Althougth MPC turns out to be a
good controller, it requires the knowledge of the future states
of both players. Consequently, the players have to know their
opponent’s cost function well to apply optimal strategy. For the
game with incomplete information, Inverse Optimal Control
(IOC) technique is thus applied to recover the unknown game
model, and thus the difficulty of incomplete information is
overcome.

As a summary, the game investigated in this paper is
solved by three steps: 1) Formulation of MPC-DPEG. 2)
Recovery of the model by IOC. 3) Deriving the Nash strategy.
The condition for the existence and uniqueness of the Nash
strategy, which serves as the constraint during the process
of IOC, is also given. The performance of the Nash pursuit
strategy and the comparison with naive pursuit strategy are

shown by numerical examples.

II. PROBLEM FORMULATION

A. Decoupled pursuit-evasion game

We first formulate a general decoupled pursuit evasion game
(DPEG) model. Consider that a pursuer, an evader and a
static target are in an R2 space. The evader intends to reach
the target, while keeping himself as far as possible from the
pursuer. The mission of the pursuer, on the other hand, is to
intercept the evader before she could get to her target. Let
the state variables xe

t , x
p
t , x

g ∈ R2 be the position of the
evader, the pursuer and the target. We denote dept and degt
as the distance between the evader and the pursuer and the
distance between the evader and the target at time t:

dept = ∥xe
t − xp

t ∥, degt = ∥xe
t − xg∥,

where ∥ · ∥ denotes the Euclidean norm. We denote re > 0
as the reaching radius of the evader, and rp > 0 as the
interception radius of the pursuer. We define the terminal
indicator function σe(·), σp(·) : R2 × R2 × R2 7→ {0, 1,∞}
for the evader and the pursuer as follows:

σe(xe
t , x

p
t , x

g) =


1, if degt > re ∧ dept > rp

0, if degt ≤ re ∧ dept > rp

+∞, if degt > re ∧ dept ≤ rp
. (1)

σp(xp
t , x

e
t , x

g) =


1, if dept > rp ∧ degt > re

0, if dept ≤ rp ∧ degt > re

+∞, if dept > rp ∧ degt ≤ re
. (2)

Note that at each time instant, σe(xe
t , x

p
t , x

g) and
σp(xp

t , x
e
t , x

g) indicate whether the game is terminated.
If the game comes to an end, the value of the cost function
of the player who loses the game will be set to +∞. Then
the pursuit and evasion game is formulated as follows:
For the evader:

min
{xe

t},{ue
t}
Je =

Tf−1∑
t=t0

σe(xe
t+1, x

p
t+1, x

g) ·
[
we

1∥xe
t+1 − xg∥2

− we
2∥xe

t+1 − xp
t+1∥2 + ∥ue

t∥2
]
,

s.t. xe
t+1 =xe

t + ue
t ,

xe
t0 =xe

0,

and for the pursuer:

min
{xp

t },{u
p
t }
Jp =

Tf−1∑
t=t0

σp(xp
t+1, x

e
t+1, x

g)

·
[
wp∥xp

t+1 − xe
t+1∥2 + ∥up

t ∥2
]
,

s.t. xe
t+1 =xp

t + up
t ,

xp
t0 =xp

0,

where we
1, w

e
2, w

p > 0 are normalized weighting parameters
for corresponding terms. xe

t0 , x
p
t0 ∈ R2 denotes the initial

position of the evader and the pursuer. Tf denotes the upper
limit of the game time horizon. In real practice, Tf is set to
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be sufficiently large to make sure that game will ends before
Tf .

DPEG model is non-smooth due to the existence of the
terminal indicator function σe(·) and σp(·) in both players’
cost functions. It brings two problems: 1) the existence and
uniqueness condition of the Nash equilibrium is difficult
to analyze. 2) It is difficult to solve the closed-loop Nash
equilibrium.

B. Formulation of MPC Decoupled Pursuit and Evasion Game

To tackle these problems, we apply MPC scheme to ap-
proximate the original model and formulate an MPC based
Decoupled Pursuit and Evasion Game (MPC-DPEG) model:
at any time instant k when the game is not ended, i.e.
s(xe

k, x
p
k, x

g) = 1, the cost function and dynamics for the
evader is given as

min
{xe

t|k},{u
e
t|k}

Ĵe
k =

k+N−1∑
t=k

[
we

1∥xe
t+1|k − xg∥2

− we
2∥xe

t+1|k − xp
t+1|k∥

2 + ∥ue
t|k∥

2
]
,

s.t. xe
t+1|k =xe

t|k + ue
t|k,

xe
k|k =xe

k.

(3)

and the cost function and dynamics for the pursuer is given
as

min
{xp

t|k},{u
p
t|k}

Ĵp
k =

k+N−1∑
t=k

[
wp∥xp

t+1|k − xe
t+1|k∥

2 + ∥up
t|k∥

2
]
,

s.t. xp
t+1|k =xp

t|k + up
t|k,

xp
k|k =xp

k.
(4)

where xe
k, x

p
k ∈ R2 denotes the state of the evader and the

pursuer at time k. In the model defined above, since wp > 0,
the cost function of the pursuer is a strictly convex function of
up
t [15]. This guarantees both the existence and the uniqueness

of the solution of up
t , given any state of the evader. In order

that the solution of ue
t also exists and is unique, given any

state of the pursuer, if

0 < we
2 ≤ we

1, (5)

which means the coefficient matrix of the quadratic term of
the state variable xe

t is semi positive-definite if the model is
written in the normal form. Note that although solutions may
still exist when we

1 < we
2, we do not consider these cases,

since reaching the target has a higher priority over avoiding
being captured for the evader.

We further define the Nash equilibrium for MPC-DPEG as
follows:

Definition 1. The pair of control input sequences
({ue∗

k|k}, {u
p∗
k|k}) is a Nash equilibrium for MPC-DPEG

if

∀k,



Ĵe
k({ue∗

k|k, u
e∗
k+1|k, · · · }, {u

p∗
k|k, u

p∗
k+1|k, · · · })

≤Ĵe
k({ue

k|k, u
e
k+1|k, · · · }, {u

p∗
k|k, u

p∗
k+1|k, · · · })

Ĵp
k ({u

p∗
k|k, u

p∗
k+1|k, · · · }, {u

e∗
k|k, u

e∗
k+1|k, · · · })

≤Ĵp
k ({u

p
k|k, u

p
k+1|k, · · · }, {u

e∗
k|k, u

e∗
k+1|k, · · · })

. (6)

Note that (ue∗
k|k, u

p∗
k|k) is the first element of the Nash

equilibrium of (Ĵe
k , Ĵ

p
k ) for all k satisfying s(xe

k, x
p
k, x

g) = 1,
and (ue∗

k|k, u
p∗
k|k) is the control input pair that is actually

applied. The Nash equilibrium for MPC-DPEG inherits the
property of classic Nash equilibrium that no player can im-
prove her performance by unilaterally deviating from the Nash
equilibrium. If both players apply MPC strategies, it is optimal
for the player as long as her opponent sticks to Nash strategy.

With such definition, we are able to solve MPC-DPEG
with indeterminate terminal time by iteratively solve for open-
loop Nash solution until the value of the terminal indicator
functions (1) and (2) change. Note that The first elements of
the open-loop Nash solution will be the new state of both
players and they will plan based on ”one step update” until
the game ends. Moreover, the solution is intrinsically a closed-
loop control strategy.

C. IOC Technique

In MPC-DPEG defined in (6), both players’ plan based on
the prediction of each other’s future states, which requires
the knowledge of the opponent’s cost function. In order to
solve for the Nash strategy for the game with incomplete
information, where everything else except the evader’s cost
function is known to the pursuer, she must find methods
to recover the evader’s cost function. The Inverse Optimal
Control technique is applied for the recovery.

IOC technique claims that the player behaves optimally,
following the instruction of the unknown cost function. It
does ”inverse engineering” to estimate the cost function based
on the knowledge of the optimal trajectories. For pursuit and
evasion game models, the evader always follow an optimal tra-
jectory according to the unknown cost function. IOC technique
enables the pursuer to estimate the evader’s cost function, and
then the Nash pursuit strategy can thus be derived.

III. NASH SOLUTION OF MPC-DPEG

For MPC-DPEG defined in (3), (4) we are able to derive
Nash strategy analytically as follows:

Proposition 1. For MPC-DPEG, the open-loop Nash strategy
satisfies the linear matrix equation (LME)

F(we
1, w

e
2, w

p)·Sk = Ck(w
e
1, x

e
k, x

p
k, x

g),∀k = t0, · · · , Tf−1
(7)

where

F(we
1, w

e
2, w

p) =


we

2I 0
0 0

−wpI 0
0 0

Fe(w
e
1, w

e
2)

Fp(w
p)

,
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Fe(w
e
1, w

e
2) =

[
(we

1 − we
2)I Γ1

I Γ2

]
, Fp(w

p) =

[
wpI Γ1

I Γ2

]
,

Γ1 =


−I I

−I
. . .
. . . I

−I

,

Γ2 =


I2
I2 I2
...

...
. . .

I2 I2 · · · I2

,

Sk =



xe∗
k+1|k

...
xe∗
k+N |k
λe∗
k|k
...

λe∗
k+N−1|k
xp∗
k+1|k

...
xp∗
k+N |k
λp∗
k|k
...

λp∗
k+N−1|k



, Ck(w
e
1, x

e
k, x

p
k, x

g) =



we
1 · xg

...
we

1 · xg

xe
k
...
xe
k

xp
k
...
xp
k

0



,

where λe
t|k, λ

p
t|k ∈ R2, t = k, · · · , k + N − 1 are Lagrange

multipliers. Ck is the vector concerning states of both players
and the evader’s goal xg . Moreover, the Nash strategy exists
and is unique if

F(we
1, w

e
2, w

p) is invertible. (8)

Proof. Since wp > 0, the cost function of the pursuer (4) is
convex, which means that the optimal trajectory of the pursuer
always exists and is unique, no matter what trajectory the
evader chooses. Given that wp

1 > wp
2 > 0, the cost function

of the evader (3) is also convex. To solve for the optimal
trajectories, we construct Lagrangian for both players:

Le,k = Je,k −
k+N−1∑

t=k

λe
t|k

T (xe
t+1|k − xe

t − ue
t|k),

Lp,k = Jp,k −
k+N−1∑

t=k

λp
t|k

T
(xp

t+1|k − xp
t − up

t|k).

By letting ∂Li,k

∂ui
t|k

= 0, we obtain ∀t = k, · · · , k +N − 1

ui∗
t|k = −λi∗

t|k, i = e, p. (9)

substituting into the dynamics, we have

xi
t|k = xi

k −
t−k−1∑
n=0

λi
k+n|k, i = e, p. (10)

By letting ∂Le,k

∂xe
t|k

=
∂Lp,k

∂xp
t|k

= 0, we obtain ∀t = k+1, · · · , k+
N

we
1(x

e
t|k − xg)− we

2(x
e
t|k − xp

t|k) + λe
t|k − λe

t−1|k = 0.

wp(x
p
t|k − xe

t|k) + λp
t|k − λp

t−1|k = 0
, (11)

where λe
k+N |k = λp

k+N |k = 0. Combining equations (9)-(11),
we are able to construct the linear matrix equation (7).

Given that (5) is satisfied, the solution of the two players
exists and is unique as long as the opponent’s states are given.
However, it does not trivially mean that the combined LME
(7) is also solvable to get the optimal control inputs of the
evader and the pursuer simultaneously. Sk in (7) exists if

Ck(w
e
1, x

e
k, x

p
k, x

g) ∈ range(F(we
1, w

e
2, w

p)),

which, combining (5), contribute to the sufficient condition of
the existence and the uniqueness of the solution.

IV. ESTIMATION OF THE EVADER’S COST FUNCTION

In order to recover the model of MPC-DPEG. IOC tech-
nique is applied to estimate the unknown weighting parameters
we

1 and we
2. IOC utilize previous trajectory record of the evader

as the reference trajectories. Then we
1 and we

2 is then estimated
by solving the following optimization problem:

min
{x̂e,i

t },we
1,w

e
2

Loss =
M∑
i=1

Tf∑
t=t0+1

∥x̂e,i
t − xe,i

t ∥2,

s.t. 0 ≤ we
2 ≤ we

1,

F(we
1, w

e
2, w

p) · Sk = Ck(w
e
1, x

e
k, x

p
k, x

g),

∀k = t0, · · · , Tf − 1,

where M ∈ N∗ is the number of reference trajectories (data).
Note that {x̂e,i

t } is obtained by solving for Sk iteratively. We
loosen the restriction of we

1, w
e
2 of positive numbers to non-

negative numbers, in order to have a closed-form constraint
for optimization. This does not interfere the result. With the
estimated weighting parameters for the evader’s cost function,
the pursuer is then able to apply a Nash strategy for DPEG.

V. NUMERICAL EXAMPLES

In this section, numerical examples of solving MPC-DPEG
with the evader’s cost function unknown and indeterminate
terminal time are given. The process is divided into two steps:
1) recovery of the evader’s cost function, 2) solving for the
Nash pursuit strategy.

A. Recovery of the evader’s cost function

We set we
1 = 2 × 10−2, we

2 = 1 × 10−2, wp = 0.1, re =
rp = 0.3, A = B = I2. The target is located at the origin
(i.e. xg =

[
0 0

]T
) and the planning horizon N for MPC-

DPEG is set to be 10, without loss of generality. We set the
initial distance of the evader and the target ∥xe0 − xg∥ = 10
and the initial distance of the pursuer and the target ∥xp0 −
xg∥ = 6 at t0, and thus randomly generate 100 scenarios. Fig.
2 illustrates the random starting position of the evader and
the pursuer. To generate reference trajectories, the pursuer’s
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Fig. 2. 100 pair of random starting positions of evader and pursuer.

TABLE I
IOC RESULTS

real estimated No. of
value value Iterations

we
1 2× 10−2 2.0002× 10−2

36
we

2 1× 10−2 0.9996× 10−2

trajectories are generated by applying a naive pursuit strategy,
that is, at each time instant t, if the game is not ended, the
pursuer goes straight towards the evader with the control input
up
t = α(xe

t − xp
t ), where 0 < α < 1 is the approaching rate.

Without loss of generality, we set the approaching rate α = 1
15 .

The evader’s reference trajectories are generated by solving the
MPC optimal control problem (3).

With generated data, we apply IOC to estimate the value of
we

1 and we
2. We set the initial value we

1
(0) = 5×10−2, wp

1
(0)

=
5× 10−3. IOC results are shown in Table I. The optimization
finishes within 36 iterations and the estimated values are
quite close to the real values, which reveals the accuracy and
feasibility of IOC techniques.

B. Nash Strategy for DPEG

With the estimated weighting parameters, we solve the
pursuit and evasion scenarios with both naive pursuit strategy
and the Nash pursuit strategy.

Although the starting positions are randomly generated, the
scenarios can be classified into three classes, according to the
angle between the line connecting the target and the evader and
the line connecting the target and the pursuer ⟨xe

0 − xg, x
p
0 −

xg⟩:
Class A: 0 ≤ ⟨xe

0 − xg, x
p
0 − xg⟩ < π

3 (Fig. 3a and Fig. 3b).
Class B: π

3 ≤ ⟨xe
0 − xg, x

p
0 − xg⟩ < 2π

3 (Fig. 3c and Fig. 3d).
Class C: 2π

3 ≤ ⟨xe
0−xg, x

p
0−xg⟩ ≤ π (Fig. 3e and Fig. 3f). In

order to give a straight view of the performance of the Nash
pursuit strategy and naive pursuit strategy, for each class, a
prototypical scenario is illustrated for comparison.

For the scenario in Class A, the pursuer succeeds in captur-
ing the evader by applying either strategy. However, the place

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Demonstration of pursuit performance of three scenarios when the
pursuer applies different strategies. 3a,3c,3e: Naive pursuit strategy; 3b,3d,3f:
the Nash Pursuit strategy.

where the pursuer who applies naive pursuit strategy capture
the evader is quite close to the target. It is quite risky as if re

takes a larger value, the evader would win the game.
For the scenario in Class B, the pursuer fails to capture the

evader in time when applying naive pursuit strategy (Fig. 3c).
In contrast, the Nash pursuit strategy guarantee the success of
capture.

Scenarios in Class C are the worst for the pursuer, since
the initial distance between the pursuer and the evader is
the longest of all classes. Pursuer who applies naive strategy
suffers from low success rate of capture in similar cases
(Fig. 3e). However, the Nash pursuit strategy still enables the
pursuer to capture the evader in time (Fig. 3f), even under
such unfavorable situation.

Stats of all the winning cases in the randomly generated
100 scenarios are demonstrated in Table II, providing direct
evidence of improvement of pursuit performance of the Nash
pursuit strategy over naive strategy. The pursuer who applies
the Nash pursuit strategy wins 96 of 100 cases, while the
pursuer applies naive pursuit strategy only wins 78 of 100
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(b)

Fig. 4. 4a: Stats of time consumption to capture the evader, the smaller the
better; 4b: Stats of distance between the evader and the target at terminal
time, the larger the better.

TABLE II
NASH PURSUIT STRATEGY V.S. NAIVE PURSUIT STRATEGY

No. of Avg. capture Avg. final dist
capture time ∥xe − xg∥

Naive 78 46.44 0.583
Nash 96 12 2.288

cases. Moreover, the Nash pursuit strategy performs better
in average capture time, consuming only one fourth of the
time that naive pursuit strategy spends. Histogram (Fig. 4a)
demonstrate the distribution of time consumption of the two
strategies, revealing that the pursuer spends less time capturing
the evader. On the other hand, the Nash pursuit strategy also
outperforms in the distance between the target and the place
where the evader is captured, which is also reflected in the
histogram (Fig. 4b).

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We formulate a nonzero-sum linear quadratic pursuit and
evasion game with incomplete information (the opponent’s
cost function is unknown). The cost functions of game is also
non-smooth due to the existence of terminal indicator func-
tions, which makes the problem difficult to solve. To address
the difficulty, we apply MPC to approximate the original game
model. To address the problem of incomplete information, IOC
technique is applied to recover the cost function of the evader,

so that the pursuer has a clear access to the evader’s future
states. This makes it possible for the pursuer to solve for the
Nash pursuit strategy. Numerical examples indicates that the
recovery of the evader’s cost function by IOC is sufficiently
accurate, and simulation results reveal the improvement of
pursuit performance when applying the Nash pursuit strategy
over naive pursuit strategy.

B. Future work

Currently, the Nash solution of one pursuer v.s. one evader
MPC-DPEG in R2 is given. In future research, more com-
plicated scenarios will be studied. The game may be further
conducted in a constrained environment, where both the evader
and the pursuer are only allowed to move in restricted areas
(e.g. due to the presence of obstacles). Moreover, the number
of pursuers and evaders may be increased so that the game
will become the team of pursuers v.s. the team of evaders. The
study of multiple number of players or even varying number
of players will broaden the field of application of MPC-DPEG.
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